

Magnetically disordered systems studied using neutron polarization analysis

Or-

Getting rid of non-magnetic scattering

"completely uninteresting"

Ross Stewart Institut Laue-Langevin, 38042 Grenoble, France

Outline

- Historical Intro magnetic defect scattering
- NPA instrumentation
- Magnetic separation using PA
- Examples: CrFe

CuMn

Quasicrystals

MnO

- RMC and polarization analysis
- PA on pulsed sources:

D7/SPAN

Supermirrors & ³He

PA and 2d detectors

Simple dilute defects in ferromagnetic 3d transition metal hosts

Laue monotonic (LM) scattering:

$$\left(\frac{d\sigma}{d\Omega}\right)_{N} = c(1-c)(b_{A} - b_{B})^{2}$$

Magnetic scattering length:

$$p = \frac{ge^2}{2m_e} \langle \mathbf{m}_J \rangle f(\mathbf{\kappa}) [\mathbf{P}.\mathbf{q}]$$
 Sign depends on neutron polarization ($\mathbf{P} = +/-1$)

 \mathbf{q} is the magnetic interaction vector, ie $\mathbf{q} = \hat{\kappa}(\hat{\kappa}.\hat{\eta}) - \hat{\eta}$

Magnetic LM scattering:

$$\left(\frac{d\mathbf{S}}{d\Omega}\right)_{M} = c(1-c)q^{2} \left(\frac{\mathbf{g}e^{2}}{2m_{e}}\right)^{2} \left[\mathbf{m}_{A}f_{A}(\mathbf{\kappa}) - \mathbf{m}_{B}f_{B}(\mathbf{\kappa})\right]^{2}$$

$$q^2 = 1 - (\hat{\mathbf{k}} \cdot \hat{\mathbf{\eta}})^2 = \frac{2}{3}$$
 for a randomly oriented magnet

Extended dilute defects in ferromagnetic 3d transition metal hosts

Laue monotonic (LM) scattering:

$$\left(\frac{d\sigma}{d\Omega}\right)_{N} = c(1-c)(b_{A} - b_{B})^{2}$$

Magnetic scattering length:

$$p = \frac{ge^2}{2m_e} \langle \mathbf{m}_J \rangle f(\mathbf{\kappa}) [\mathbf{P}.\mathbf{q}]$$
 Sign depends on neutron polarization ($\mathbf{P} = +/-1$)

 \mathbf{q} is the magnetic interaction vector, ie $\mathbf{q} = \hat{\kappa}(\hat{\kappa}.\hat{\eta}) - \hat{\eta}$

Magnetic LM scattering:

$$\left(\frac{d\mathbf{S}}{d\Omega}\right)_{M} = c(1-c)q^{2}\left(\frac{\mathbf{g}e^{2}}{2m_{e}}\right)^{2}\left[\mathbf{m}_{A}f_{A}(\mathbf{\kappa}) - \mathbf{m}_{B}f_{B}(\mathbf{\kappa}) + \Phi(\mathbf{\kappa})\right]^{2}$$

$$q^2 = 1 - (\hat{\mathbf{\kappa}} \cdot \hat{\mathbf{\eta}})^2 = \frac{2}{3}$$
 for a randomly oriented magnet

Diffuse magnetic scattering of unpolarized neutrons

$$\left(\frac{ds}{d\Omega}\right) = \left(\frac{ds}{d\Omega}\right)_{N} + \left(\frac{ds}{d\Omega}\right)_{M}$$

For $H \perp k$: $q^2 = 1$

For $H \mid | \mathbf{k} : q^2 = 0$ (i.e. no magnetic scattering)

$$\left(\frac{d\mathbf{S}}{d\Omega}\right)_{\mathbf{H}\perp\mathbf{\kappa}} - \left(\frac{d\mathbf{S}}{d\Omega}\right)_{\mathbf{H}\parallel\mathbf{\kappa}} \propto \left[\mathbf{m}_{A}f_{A}(\mathbf{\kappa}) - \mathbf{m}_{B}f_{B}(\mathbf{\kappa}) + \Phi(\mathbf{\kappa})\right]^{2}$$

Note: possible ambiguities in relative direction of magnetic defect and host magnetisation

Diffuse magnetic scattering from defects in ferromagnets: Polarized neutron methods

The difference between spin-up and spin down scattering gives

$$\Delta \left(\frac{ds}{d\Omega}\right) = \left(\frac{ds}{d\Omega}\right)_{+} - \left(\frac{ds}{d\Omega}\right)_{-} = 2 \left(\frac{ds}{d\Omega}\right)_{NM}$$

NB: Good signal relies on good nuclear scattering contrast

Note that:
$$\Delta \left(\frac{d\mathbf{s}}{d\Omega}\right)_{k=0} = 2 \left(\frac{ge^2}{2m_e}\right) c(1-c)(b_A - b_B) \frac{d\overline{\mathbf{m}}}{dc}$$
where can be obtained from bulk magnetisation measurements

can be obtained from bulk magnetisation measurements

Magnetic defects in ferromagnetic FeMn alloys

D7 (1976): Polarized beam diffraction Fe -2.8at%Mn (dilute defect limit)

Assumed in the analysis that $f_{Fe}(\kappa) = f_{Mn}(\kappa)$

 $\Phi(\kappa)$ is the spherically averaged Fourier transform of the single atom moment disturbance $\Delta\mu$ on the host Fe atoms at a distance r from the impurity Mn atoms.

i.e. $\mu_{Fe} = \mu_{Fe \text{ pure}} - \Delta \mu$

Pure Fe moment Fe moment

Mn moment

Mezei, Proc Conf. Neutron Scatt., Gatlinberg 1976

PA diffuse scattering Instrumentation

D7 (ILL, c. 1972)

Polarization analysis installed between 1980 and 1990

Polarized flux: ~ 1.6 × 10⁶

Analyser coverage: 0.11 sr

(in 2004: 0.19 sr

in 2006: 0.375 sr)

PA diffuse scattering Instrumentation

DNS (FRJ-II, FZJ)

See next talk.....

Polarized flux: high!

Solid angle coverage: less!

PA diffuse scattering Instrumentation

LONGPOL (HIFAR, Ansto)

Polarized flux: 2 × 10⁴

Solid angle coverage: ~ 0.02 sr

- Diffuse scattering
- Cold neutrons
- 6000 supermirrors
- 42 detectors
- 1-directional polarization analysis: Separation of coherent and incoherent scattering
- 3-directional polarization analysis: Separation also of magnetic scattering
- Time-of-flight

D7 Analyser upgrade (supermirrors)

Solid angle gain:

 \times 6.1

Flux gain:

 \times 3

Transmission gain:

 \times 3

Total gain:

× 50

Old

The price of PA

- Only PA can unambiguously separate magnetic from nuclear scattering, but at a <u>high cost</u> in counting time:
 - Transmission of supermirror benders ~ 0.25-0.30
 - 3-directional PA requires 6 measurements
 - Magnetic scattering is the difference between 3 measurements
- Equivalent counting time ~ 150 times unpolarized experiment
- Limit of presently feasible D7 experiments:
 - Magnetic moments > $\sim 0.5 \mu_B/f.u.$
 - Single crystals > ~ 2 cm³
 - Quasistatic approximation: $|h\omega| < ~3 \text{ meV}$
 - T. O. F. : $E_{res} = 0.5 \text{meV}$
- Breakdown of experiments on D7: 3% unpolarized chopper
 - 0% unpolarized integral
 - 15% polarized chopper
 - 82% polarized integral

General 3-directional polarization analysis

Q is always in x-y plane -

$$\frac{\kappa}{k} = \begin{pmatrix} \cos a \\ \sin a \\ 0 \end{pmatrix}$$

•These are the diagonal terms of the full 3d polarization tensor.

$$\begin{bmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{bmatrix}$$

$$\begin{split} &\left(\frac{d\sigma}{d\Omega}\right)_{X}^{SF} = \frac{1}{2}(\cos^{2}\alpha + 1)\!\!\left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{2}{3}\!\!\left(\frac{d\sigma}{d\Omega}\right)_{SI} \\ &\left(\frac{d\sigma}{d\Omega}\right)_{X}^{NSF} = \frac{1}{2}(\sin^{2}\alpha + 1)\!\!\left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{1}{3}\!\!\left(\frac{d\sigma}{d\Omega}\right)_{SI} + \!\!\left(\frac{d\sigma}{d\Omega}\right)_{NC} + \!\!\left(\frac{d\sigma}{d\Omega}\right)_{II} \\ &\left(\frac{d\sigma}{d\Omega}\right)_{Y}^{SF} = \frac{1}{2}(\sin^{2}\alpha + 1)\!\!\left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{2}{3}\!\!\left(\frac{d\sigma}{d\Omega}\right)_{SI} \\ &\left(\frac{d\sigma}{d\Omega}\right)_{Y}^{NSF} = \frac{1}{2}(\cos^{2}\alpha + 1)\!\!\left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{1}{3}\!\!\left(\frac{d\sigma}{d\Omega}\right)_{SI} + \!\!\left(\frac{d\sigma}{d\Omega}\right)_{NC} + \!\!\left(\frac{d\sigma}{d\Omega}\right)_{II} \\ &\left(\frac{d\sigma}{d\Omega}\right)_{Z}^{SF} = \frac{1}{2}\!\!\left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{2}{3}\!\!\left(\frac{d\sigma}{d\Omega}\right)_{SI} \\ &\left(\frac{d\sigma}{d\Omega}\right)_{Z}^{NSF} = \frac{1}{2}\!\!\left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{1}{3}\!\!\left(\frac{d\sigma}{d\Omega}\right)_{SI} + \!\!\left(\frac{d\sigma}{d\Omega}\right)_{II} \\ &\left(\frac{d\sigma}{d\Omega}\right)_{Z}^{NSF} = \frac{1}{2}\!\!\left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{1}{3}\!\!\left(\frac{d\sigma}{d\Omega}\right)_{SI} + \!\!\left(\frac{d\sigma}{d\Omega}\right)_{NC} + \!\!\left(\frac{d\sigma}{d\Omega}\right)_{II} \end{split}$$

Blume, PR 130 (1963) 1670, Moon, Riste and Koehler PR 181 (1969) 920, Scharpf and Capellmann Phys Stat Sol a135 (1993) 359

Neutron Polarization Analysis: The parallel-perpendicular method (P - 1)

Simple polarisation analysis geometry

eg early LONGPOL D5 (ILL)

$$\hat{P} \cdot \hat{k} = 1 : a = 0$$

$$\left(\frac{ds}{d\Omega}\right)_{SF} = \left(\frac{ds}{d\Omega}\right)_{MAG} + \frac{2}{3} \left(\frac{ds}{d\Omega}\right)_{SI}$$

$$\hat{P} \cdot \hat{k} = 0 : a = p/2$$

$$\left(\frac{ds}{d\Omega}\right)_{SF} = \frac{1}{2} \left(\frac{ds}{d\Omega}\right)_{MAG} + \frac{2}{3} \left(\frac{ds}{d\Omega}\right)_{SI}$$

NB. Only works for a single detector, and a single energy transfer Ziebeck and Brown J. Phys. F 10 2015

Neutron Polarization Analysis:

The Z-up/down method (non-magnetic systems)

"Z-up / Z-down" mode

$$\left(\frac{d\sigma}{d\Omega}\right)_{X}^{SF} = \frac{1}{2}(\cos^{2}\alpha + 1)\left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{2}{3}\left(\frac{d\sigma}{d\Omega}\right)_{SI}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{X}^{NSF} = \frac{1}{2}(\sin^{2}\alpha + 1)\left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{1}{3}\left(\frac{d\sigma}{d\Omega}\right)_{SI} + \left(\frac{d\sigma}{d\Omega}\right)_{NC} + \left(\frac{d\sigma}{d\Omega}\right)_{II}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{Y}^{SF} = \frac{1}{2} (\sin^{2}\alpha + 1) \left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{2}{3} \left(\frac{d\sigma}{d\Omega}\right)_{SI}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{Y}^{NSF} = \frac{1}{2}(\cos^{2}\alpha + 1)\left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{1}{3}\left(\frac{d\sigma}{d\Omega}\right)_{SI} + \left(\frac{d\sigma}{d\Omega}\right)_{NC} + \left(\frac{d\sigma}{d\Omega}\right)_{II}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{Z}^{SF} = \frac{1}{2} \left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{2}{3} \left(\frac{d\sigma}{d\Omega}\right)_{SI}$$

Suitable for multidetector experiments where either

$$\sigma_{MAG} = 0 \text{ or } s_{SI} = 0$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{Z}^{NSF} = \frac{1}{2} \left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{1}{3} \left(\frac{d\sigma}{d\Omega}\right)_{SI} + \left(\frac{d\sigma}{d\Omega}\right)_{NC} + \left(\frac{d\sigma}{d\Omega}\right)_{II}$$

Neutron Polarization Analysis: 3-directional polarization analysis

"XYZ" mode

$$\begin{array}{c}
X \\
X \\
\downarrow \\
-Z
\end{array}$$

$$\begin{pmatrix}
\frac{d\sigma}{d\Omega} \\
\frac{d\sigma}{d\Omega}
\end{pmatrix}_{MAG} = 2 \begin{bmatrix}
\frac{d\sigma}{d\Omega} \\
\frac{d\sigma}{d\Omega}
\end{pmatrix}_{SF} + \begin{pmatrix}
\frac{d\sigma}{d\Omega} \\
\frac{d\sigma}{d\Omega}
\end{pmatrix}_{SF} - 2 \begin{pmatrix}
\frac{d\sigma}{d\Omega} \\
\frac{d\sigma}{d\Omega}
\end{pmatrix}_{SF} = 2 \begin{bmatrix}
\frac{d\sigma}{d\Omega} \\
\frac{d\sigma}{d\Omega}
\end{pmatrix}_{NSF} - 2 \begin{pmatrix}
\frac{d\sigma}{d\Omega} \\
\frac{d\sigma}{d\Omega}
\end{pmatrix}_{NSF} - 2 \begin{pmatrix}
\frac{d\sigma}{d\Omega} \\
\frac{d\sigma}{d\Omega}
\end{pmatrix}_{NSF} = 2 \begin{bmatrix}
\frac{d\sigma}{d\Omega} \\
\frac{d\sigma}{d\Omega}
\end{pmatrix}_{NSF} - 2 \begin{pmatrix}
\frac{d\sigma}{d\Omega} \\
\frac{d\sigma}{d\Omega}
\end{pmatrix}_{NSF}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{X}^{SF} = \frac{1}{2}(\cos^{2}\alpha + 1)\left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{2}{3}\left(\frac{d\sigma}{d\Omega}\right)_{SI}$$

$$\begin{array}{ccc} & & Z \\ & & X \end{array} \qquad \begin{array}{c} & Z \\ & & \end{array} \left(\frac{d\sigma}{d\Omega} \right)_{X}^{NSF} = \frac{1}{2} (\sin^2 \alpha + 1) \left(\frac{d\sigma}{d\Omega} \right)_{MAG} + \frac{1}{3} \left(\frac{d\sigma}{d\Omega} \right)_{SI} + \left(\frac{d\sigma}{d\Omega} \right)_{NC} + \left(\frac{d\sigma}{d\Omega} \right)_{II} \end{array}$$

$$k_{f} \int \left(\frac{d\sigma}{d\Omega}\right)_{Y}^{SF} = \frac{1}{2} (\sin^{2}\alpha + 1) \left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{2}{3} \left(\frac{d\sigma}{d\Omega}\right)_{SI}$$

$$\frac{-Z}{d\Omega} \left(\frac{d\sigma}{d\Omega} \right)_{Y}^{NSF} = \frac{1}{2} (\cos^{2} \alpha + 1) \left(\frac{d\sigma}{d\Omega} \right)_{MAG} + \frac{1}{3} \left(\frac{d\sigma}{d\Omega} \right)_{SI} + \left(\frac{d\sigma}{d\Omega} \right)_{NC} + \left(\frac{d\sigma}{d\Omega} \right)_{II}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{Z}^{SF} = \frac{1}{2} \left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{2}{3} \left(\frac{d\sigma}{d\Omega}\right)_{SI}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{Z}^{NSF} = \frac{1}{2} \left(\frac{d\sigma}{d\Omega}\right)_{MAG} + \frac{1}{3} \left(\frac{d\sigma}{d\Omega}\right)_{SI} + \left(\frac{d\sigma}{d\Omega}\right)_{NC} + \left(\frac{d\sigma}{d\Omega}\right)_{II}$$

$Cr_{1-c}Fe_c$: magnetic impurities in a SDW (P- \perp)

Cr_{1-c}Fe_c: magnetic impurities in a SDW

- Fe atoms cluster:
 each Fe atom has 1.6 Fe atoms in its near neighbour shell
- μ_{Fe} μ_{Cr} = -0.60 ±0.08 μ_{B} But μ =0.68 μ_{B} , therefore within error there is no moment on the Fe atom
- $g_{Cr}(R_1) = 0.58 \ \mu_B : g_{Cr}(R_2) = -0.55 \ \mu_B$ The amplitude of the surrounding SDW is reduced almost to zero in the first two near neighbour shells around an Fe impurity

Polarization analysis studies of Cu_{1-c}Mn_c

- Mn atoms have a tendency to anticluster
- An oscillatory RKKY-like interaction leads to
 - antiferromagnetic near
 - neighbour
 - ferromagnetic next near neighbour interactions

Davis, Burke and Rainford JMMM 15-18 (1980) 151

Polarization analysis studies of Cu_{1-c}Mn_c

Polarization analysis studies of quasi-crystalline Zn-Mg-Ho

- Despite apparent spin-glass order, strong diffuse peaks with small "background".
- Blue circles represent positions of nuclear peaks
- Apparent that strong antiferromagnetic correlations exist - despite unremarkable bulk susceptibility

Persistent paramagnetic correlations in MnO

T = 150 K

T = 500 K

β-Mn

- Simple cubic P4₁32
- a = 6.32Å
- 8 site I (blue) atoms (non-magnetic)
 12 site II (red) atoms (magnetic)
- Apparent frustration between triangularly coordinated site II atoms in "distorted windmill" structure
- Perfect frustration for:

$$y = \frac{9 - \sqrt{33}}{16} = 0.20346..$$

But degenerate only along <1 1 1>

Disorder in frustrated β-Mn alloys

 Several studies carried out on D7, looking at nuclear and magnetic correlations in doped β-Mn alloys

β-Mn(AI) - AI expands lattice, sits on site II
 β-Mn(In) - In expands lattice, sits on site II but less chemical disorder than AI
 β-Mn(Co) - Co donates electrons, sits on site I

 Restricted to use alloys since a spin-glass magnetic ground state is formed. Needed to ensure full integration over spinfluctuations.

Polarization analysis studies of disordered magnets

Within the quasi-static approximation

$$\left(\frac{d\mathbf{S}}{d\Omega}\right)_{M} = \left(\frac{\mathbf{g}e^{2}}{2m_{e}}\right)^{2} g_{s}^{2} f(\mathbf{\kappa})^{2} q^{2} \sum_{i,j} e^{i\mathbf{\kappa}.(\mathbf{R}_{i} - \mathbf{R}_{j})} \langle S_{i}^{a} \rangle \langle S_{j}^{b} \rangle$$

Taking the polycrystalline average:

$$\left(\frac{d\mathbf{S}}{d\Omega}\right)_{M} = \frac{2}{3} \left(\frac{\mathbf{g}e^{2}}{2m_{e}}\right)^{2} g_{s}^{2} f_{B}^{2}(\mathbf{\kappa}) S(S+1) \left[1 + \sum_{i} \left\{c + (1-c)a(R_{i})N_{i} \frac{\left\langle S_{0}.S(R_{i})\right\rangle}{S(S+1)} \frac{\sin kR_{i}}{kR_{i}}\right\}\right]$$

with the polycrystalline average of the nuclear cross section

$$\left(\frac{d\sigma}{d\Omega}\right)_{N} = c(1-c)(b_{A} - b_{B})^{2} \left[1 + \sum_{i} \alpha(R_{i}) \frac{\sin \kappa R_{i}}{\kappa R_{i}}\right]$$

Disorder in β -Mn alloys

 β -Mn is non-centrosymmetric so polycrystalline average of nuclear cross section for just site II is rather complex:

$$\left(\frac{ds}{d\Omega}\right)_{N} = c(1-c)(b_{A}-b_{B})^{2} \left[1+6a_{1}\frac{\sin kR_{1}}{kR_{1}}+2a_{2}\frac{\sin kR_{2}}{kR_{2}}+2a_{3}\frac{\sin kR_{3}}{kR_{3}}+\dots\right]$$
to 4\AA

$$+4a_{4}\frac{\sin kR_{4}}{kR_{4}}+2a_{5}\frac{\sin kR_{5}}{kR_{5}}+4a_{6}\frac{\sin kR_{6}}{kR_{6}}+4a_{7}\frac{\sin kR_{7}}{kR_{7}}+\dots\right]$$
to 5\AA

$$+4a_{8}\frac{\sin kR_{8}}{kR_{8}}+4a_{9}\frac{\sin kR_{9}}{kR_{9}}+2a_{10}\frac{\sin kR_{10}}{kR_{10}}+4a_{11}\frac{\sin kR_{11}}{kR_{11}}+\dots$$
to 6\AA

$$\dots \text{ etc}$$

and similarly for the magnetic cross section

A direct least squares fit is not appropriate.....

....instead use Monte Carlo procedures

Reverse Monte Carlo procedure

- Simulate a β -Mn lattice of $6 \times 6 \times 6$ unit cells
- Distribute AI atoms at random and exchange positions, calculating nuclear cross section and minimising χ^2

Reverse Monte Carlo procedure

- Simulate a β -Mn lattice of 4×4×4 unit cells with periodic boundary conditions
- Distribute Al atoms at random on site II and exchange positions, calculating nuclear cross section and minimising χ^2
- Use resulting lattice as input for magnetic simulation

Reverse Monte Carlo procedure

- Simulate a β -Mn lattice of 4×4×4 unit cells with periodic boundary conditions
- Distribute Al atoms at random on site II and exchange positions, calculating nuclear cross section and minimising χ²
- Use resulting lattice as input for magnetic simulation
- Place random Heisenberg spins of unit length on Mn sites and reorient spin directions, adjusting S(S+1), calculating magnetic cross section and minimising χ²
- J. R. Stewart, et. al., J. Appl. Phys. 87, 5425 (2000)

β - MnAl alloys

Structural correlations

P AIAI (R_i) is oscillatory with a period of 3Å, independent of concentration, and is exponentially damped with a range parameter that decreases with increasing concentration

Magnetic correlations

Spin correlations are predominantly antiferromagnetic and heavily

damped.

	O _{peak} (Å ⁻¹)	~ ξ (Å)
β -Mn(3at%AI)	1.53	5.6
β -Mn(6at%AI)	1.46	5.2
β -Mn(10at%AI)	1.41	5.0
β-Mn(20at%AI)	1.32	~4.5

β - MnAl alloys

Structural correlations

P AIAI (R_i) is oscillatory with a period of 3Å, independent of concentration, and is exponentially damped with a range parameter that decreases with increasing concentration

Magnetic correlations
Spin correlations are predominantly antiferromagnetic and heavily damped.

Within each shell the spin correlations

$$\frac{\left\langle S_0 S(R_i) \right\rangle}{S(S+1)}$$

are widely distributed

J. R. Stewart, et. al., J. Appl. Phys. 87, 5425 (2000)

β - MnAl alloys

The Mn moment at high concentrations is in close agreement with NMR estimates (~1.1 μ_B) BUT.....

Compare with full integration....

- Actually, moments are roughly the same across the series
- Change of moment must be a dynamical phenomenon...

• $\mu = 1.36 \mu_B/Mn$ atom

• $\mu = 1.44 \mu_B/Mn$ atom

Pulsed Sources?

 Proposed D7/SPAN spectrometer for ESS (C Pappas, G Ehlers, J R Stewart and F Mezei)

D7/SPAN

D7/SPAN field geometry

Supermirrors vs. ³He

³He wins for wavelengths < 3Å Needs v. clean magnetic environment (prob. Not compatible with NSE)

3 directional PA on a general multidetector

All PA diffuse scattering takes place using a "flat cone" geometry. But for a general PSD multidetector we have the geometry

So k is such that:

$$\frac{\kappa}{k} = \begin{cases} \sin a \sin b \\ \cos a \sin b \\ \cos b \end{cases}$$

Stewart and Andersen, not yet published....

3 directional PA on a general multidetector

We find the powder averaged cross-sections, where $M_x^2 = M_y^2 = M_z^2$ Where we include the nuclear and spin-incoherent contributions

$$\frac{\partial^{2} \mathbf{s}_{\uparrow\downarrow}^{z}}{\partial \Omega \partial E} = \frac{1}{2} M (1 + \cos^{2} b) + \frac{2}{3} SI$$

$$\frac{\partial^{2} \mathbf{s}_{\uparrow\downarrow}^{y}}{\partial \Omega \partial E} = \frac{1}{2} M (1 + \cos^{2} a \sin^{2} b) + \frac{2}{3} SI$$

$$\frac{\partial^{2} \mathbf{s}_{\uparrow\downarrow}^{x}}{\partial \Omega \partial E} = \frac{1}{2} M (1 + \sin^{2} a \sin^{2} b) + \frac{2}{3} SI$$

$$\frac{\partial^{2} \mathbf{s}_{\uparrow\uparrow}^{z}}{\partial \Omega \partial E} = \frac{1}{2} M \sin^{2} b + \frac{1}{3} SI + N$$

$$\frac{\partial^{2} \mathbf{s}_{\uparrow\uparrow}^{y}}{\partial \Omega \partial E} = \frac{1}{2} M (1 - \cos^{2} a \sin^{2} b) + \frac{1}{3} SI + N$$

$$\frac{\partial^{2} \mathbf{s}_{\uparrow\uparrow}^{x}}{\partial \Omega \partial E} = \frac{1}{2} M (1 - \sin^{2} a \sin^{2} b) + \frac{1}{3} SI + N$$

NB: Setting $\beta = 90^{\circ}$ Brings us back to original equations

3 directional PA on a general multidetector

Separation

Not really:
$$\frac{\partial s_{\uparrow\downarrow}^{x}}{\partial \Omega \partial E} + \frac{\partial s_{\uparrow\downarrow}^{y}}{\partial \Omega \partial E} - 2 \frac{\partial s_{\uparrow\downarrow}^{z}}{\partial \Omega \partial E} = \frac{M}{2} (3\cos^{2} a - 1)$$
$$2 \frac{\partial s_{\uparrow\uparrow}^{z}}{\partial \Omega \partial E} - \frac{\partial s_{\uparrow\uparrow}^{y}}{\partial \Omega \partial E} - \frac{\partial s_{\uparrow\uparrow}^{x}}{\partial \Omega \partial E} = \frac{M}{2} (3\sin^{2} a - 2)$$

But this doesn't really matter since both α is known if k is known – and k is known exactly assuming energy analysis is involved – easy on a pulsed source

Conclusions:

No problem if time-of-flight is used But must restrict geometry to $\alpha = 90^{\circ}$ for diffraction measurements.

Conclusions

- Polarized neutrons: necessary for magnetic diffuse scattering studies
- Diffuse scattering/Spin-echo hybrids: Compatible wavelength bands and SNR requirements. (may also be compatible with <u>polarimetry</u> over wide angles)
- TOF diffuse spectrometer: Use of truly general multidetector big advantage for single crystal studies - and ideally suited to a pulsed source

Acknowledgements

- Amir Murani
- Ken Andersen
- Otto Schärpf
- Bob Cywinski
- Katia Pappas